STD 7000
7701
16K Static Ram
Memory Card
USER'S MANUAL

7701

## 16K Static Ram Memory Card USER'S MANUAL

C

TABLE OF CONTENTS

| SECTION 1 | Data Sheet |
| :---: | :---: |
| SECTION 2 | Functional Description |
| SECTION 3 | Card Address Mapping |
| SECTION 4 | Read, Write, and Bus Control |
| SECTION 5 | Electrical Specifications |
| SECTION 6 | Mechanical Specifications |
| SECTION 7 | $21141024 \times 4$ Bit Static Ram Description |
| SECTION 8 | Schematic |
| SECTION 9 | Assembly Drawing |
| SECTION 10 | Series 7000 Memory Card Timing |
| APPENDIX A | Plan \#133 Thermal Application Note For Microprocessor Systems Using STD/Series 7000 Cards |



## 16K BYTE STATIC RAM

 MEMORY CARDThis card provides sockets for up to 16,384 bytes of Read-Write or PROM Memory. The card uses 2114 type RAMs or equivalent and has sockets for 16 pairs of RAMs. Alternately the card will accept 3625 type PROMs or equivalent. PROMs and RAMs can not be mixed on the same card.
The 7701 decodes 16 address lines, and can be mapped into either 8 K or 16 K bytes of consecutive address space. An on-card jumper system allows users to establish which 16K segment of a 64 K microprocessor memory each 7701 occupies.

FEATURES

- Sockets for 16K bytes of 2114L RAMs or 3625 PROMs
- User selectable card address
- All STD BUS lines buffered
- Minimal logic bus loading
- All IC's socketed

- Single +5 V operation
- Use Pro-Log D1004, 1Kx8 memories (two 2114L's)


2. FUNCTIONAL DESCRIPTION

The 7701 is organized to accept 16 pair ( 32 sockets) $2114 \mathrm{~L} 1024 \times 4$-bit statis RAMs. Although the card may be populated with less than the full complement of 2114 L chips, the data bus drivers are enabled anytime a valid address is present even if memory chips are not plugged in. The card address range is chosen to prevent bus contention with other system memory elements including processor on-card memory, other memory cards, and memory mapped 1/0. Each pair of the 2114L's add 1K 8-bit bytes of RAM, which are designated memory blocks $0-15$ (MBO - MB15).

Each memory block consists of 2 each ( $1024 \times 4$ ) 2114L RAMs. (Reference Assembly Diagram 102687)


PROM OPTION
The card is designed to accept type 3625 PROMs in place of 2114 RAMs with an increase in card power consumption. PROMs and RAMs may not be mixed on the same card. If this option is exercised be sure to cut traces and ground pin 10 of all chips.
3. CARD ADDRESS MAPPING


CARD SELECT DECODING 74LS42 (U4)

The upper three (A15, A14, A13) address lines are decoded by an 74LS42 (U4) for card address selection. Al5 and Al4 are decoded to select one of the four 16 banks. Address line Al3 is decoded for selection of the lower 8 K ( $\mathrm{SX} *$ ) and the upper $8 \mathrm{~K}(\mathrm{SY} \%$ ) of the 16 K bank.

```
CARD SELECT DECODER
```



The next lower three address lines (Al2, All, AlO) are decoded by two each 74LS42, U5 and U6. U5 is strobed by SX* line and selects the lower 8 address banks. U6 is strobed by $S Y *$ line and selects the upper 8 address banks, U5 and U6 are designated Chip Select Decoders on the schematic diagram,


Each chip enable line goes to pin 8 (CE*) of a pair of 2114L chips, (1K block) The lower ten address lines are used for direct addressing of the 1 K chip pairs, and are buffered by U 3 and U 7 .


| FROM CARD SELECT DECODER SY* LOWER 8K |  | (U5) <br> CHIP ENABLE | $\begin{aligned} & \mathrm{CHIP} \\ & \hline \text { UPPER } \\ & \hline \end{aligned}$ | SET <br> LOWER | BLQCK |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CE9K* | U25 | U33 | MB8 | A000 - A3FF |
|  |  | CEIOK* | U26 | U34 | MB9 | A400 - A7FF |
|  |  | CE11* | U27 | U35 | MB10 | A800 - ABFF |
|  |  | CEI2K* | U28 | U36 | MB11 | ACOO - AFFF |
|  |  | CEI3K* | U29 | 437 | MB12 | B000 - B3FF |
|  |  | CE14K* | U30 | U38 | MB13 | B400 - B7FF |
|  |  | CE15K* | U31 | U39 | MB14 | B800 - BBFF |
|  |  | CE16K* | U32 | 440 | MB15 | BCOO - BFFF |



MEMORY ADDRESS MAP \& JUMPER SELECTION TABLE FOR IK MEMORY BLOCK


Card Address Selection
4. READ, WRITE, AND BUS CONTROL

0


The write strobe to the 2114 L chips and the read/write control signals for BUS BUFFER directional control is the implementation of the following Boolean Logic:

$$
\begin{aligned}
& R D M *=\overline{[(S X+S Y) \cdot M E R Q \cdot R E A D]} \\
& W R M *=\overline{[(S X+S Y) \cdot M E R Q \cdot W R I T E]}
\end{aligned}
$$

If Intel Mask ROM 3625 is to be used, it is necessary to cut the two traces of the WRM: line and ground pin 10 of all memory sockets. Pads are provided for this option. (PROMs and RAMs may not be mixed on the same card).

NOTE: The Card's data bus drivers (74LS244) U1 and U2 are enabled anytime a valid address is present even if memory chips are not plugged in. The card address range is chosen to prevent bus contention with other system memory elements including processor on-card memory, other memory cards, and memory mapped 1/0.
5. ELECTRICAL SPECIFICATIONS
$\mathrm{Vcc}=+5 \mathrm{~V} \pm 5 \%$
Icc $=2.08 \mathrm{~A}$ maximum ( 1.6 A typical) with RAM
Power $=8.0$ watts (typical) $\%$ *
Sockets fully loaded ( 65 mA per RAM maximum)
Address, Data, and Control Busses meet all STD BUS general electrical specifications except: AlO, All, Al2 - These address bus inputs present 2 LSTTL loads maximum each.


Edge Connector Pin List

## 6. MECHANICAL SPECIFICATIONS

The Series 7000 cards conform to the STD BUS standards, with the following additional requirements, including those shown.


Series 7000 STD BUS Edge Card Finger Specifications
7. $21141024 \times 4$ BIT STATIC RAM DESCRIPTION


| 2114 RAM PIN NAMES | ACTIVE STATE |
| :---: | :---: |
| A0 - A9 Address Inputs | High |
| D0 - D3 Data Input/Output | High |
| CE* Chip Enable | Low |
| WE* Write Enable | High Read/Low Write |
| Vcc Power (+5V) | - |
| $\pm$ Ground | - |




Series 7000 cards are designed to communicate over the STD BUS backplane in any combination without user timing considerations. The following information is provided to accommodate the use of pin compatible memory chip variations which can be used in the Series 7000 memory cards.
Figure 10-1 shows the functional blocks of the 7700 Memory cards. The delays contributed by these blocks are added to the memory chip delays and access times to determine the AC characteristics of the card. The table in Figure $10-2$ gives maximum propagation delays for the memory card. For exact delays use the IC manufacturer's data sheets and the appropriate schematics.


Figure 10-1 Memory Card Functional Blocks

| CIRCUIT | PROPAGATION DELAY |  |  | LOAD CONDITIONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | FROM | то | - TPD MAX | CL | RL |
| ADDRESS DECODERS | ADDRESS BUS OR MEMEX* | MEMORY CHIP ENABLE OR READ/WRITE ENABLE | 75 ns | 15 pF | - |
| ADDRESS BUFFERS | ADDRESS BUS | MEMORY CHIP ADDRESS | 35 ns | 160 pf | - |
| DATA BUFFERS | MEMORY CHIP DATA (OUT) | DATA BUS | 20 ns | 45 pF | $4.7 \mathrm{~K} \Omega$ |
|  | $\begin{aligned} & \text { DATA } \\ & \text { BUS } \end{aligned}$ | MEMORY CHIP DATA (IN) | 25 ns | 80 pF | - |
|  | READ WRITE CONTROL | VALID OUTPUT ENABLE | 30 ns | 100 pF | $4.7 \mathrm{~K} \Omega$ |
| READ WRITE CONTROL | DECODER OUTPUT RD', WR* OR MEMRQ* | RDM OR WRM* (RAMs ONLY) | 70 ns |  |  |

Figure 10-2 Generalized Maximum Delays For Memory Cards

For example, the 2114 RAM chip's specified Data Read access time from an address change (AO-A9) is 450 ns . In the 7701 this increased by the address buffers ( 35 ns ) and data buffers (20ns) to 505ns. In this case the decoding of Al0-A15 and the Data Bus buffer control are presumed to occur during the RAM data access time,

## APPENDIX A

PLAN \#133 - THERMAL APPLICATION NOTE FOR MICROPROCESSOR SYSTEMS USING STD/SERIES 7000 CARDS

TABLE OF CONTENTS

| SECTION 1 | INTRODUCTION |
| :--- | :--- |
| SECTION 2 | THERMAL CONSIDERATIONS FOR STD SYSTEMS |
| SECTION 3 | CONFIGURING A TYPICAL SYSTEM |
| SECTION 4 | FAILURE RATE ACCELERATION DUE TO T J |
| SECTION 5 | THERMAL RESISTANCE OF ICS |
| SECTION 6 | FORCED AIR COOLING |
| SECTION 7 | CONCLUSION |

## ILLUSTRATIONS

FIGURE 1
FIGURE 2
THERMAL AND ELECTRICAL ANALOGY
HEAT FLOW IN ENCLOSED DIGITAL SYSTEM

## TABLES

TABLE 1

TABLE 2

TABLE 3

TYPICAL NOMINAL POWER DISSIPATION FOR SERIES 7000 CARDS
THERMAL RESISTANCE OF TYPICAL IC PACKAGES
FAILURE RATE AS A FUNCTION OF $T_{J}$

THERMAL APPLICATION NOTE FOR MICROPROCESSOR SYSTEMS USING STD/SERIES 7000 CARDS

## SECTION 1 - INTRODUCTION

The failure rate of many electrical components is an exponential function of junction temperature. Temperature rise from ambient to junction temperature depends on many factors such as power density i.e. watts/inch ${ }^{3}$, air velocity over the high dissipating components, thermal resistance (junction-to-case) and dissipation of the component, and the thermal characteristics of the cabinet which houses the system.

This application note is intended to aid the user in estimating and solving his thermal problems. Sample analyses of two Series 7000 Systems are included, as well as suggestions for minimizing thermal effects.

Heat flow is analogous to current flow in an electrical circuit. The electrical and thermal equivalent are presented in Figure 1.


THERMAL Equations

| THERMAL |  |  |
| :---: | :---: | :---: |
| SYMBOL | NAME | UNITS |
| $P$ | POWER (HEAT <br> FLOW) | WATTS |
| $T$ | TEMPERATURE <br> DIFFERENCE | ${ }^{\circ} \mathrm{C}$ |
| $R_{\theta}$ | THERMAL <br> RESISTANCE | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## ELECTRICAL EQUATIONS

| ELECTRICAL |  |  |
| :---: | :---: | :---: |
| SYMBOL | NAME | UNITS |
| 1 | CURRENT | VOLTS |
| $V$ | VOLTAGE DIFF: | OHMS |
| $R$ | ELECTRICAL <br> RESISTANCE |  |

Figure 2 shows STD cards as heat sources in an enclosed digital system. The heat generated by a card is the sum of numerous heat sources: the heat generated by ICs plus any singular components. Most heat is generated in the different junctions within the IC. An average thermal resistance between any junction and the case is assumed. Heat flow from an IC with a junction temperature $T_{J}$ encounters the junction-to-case thermal resistance $R_{\theta J C}$ and raises the case temperature to $T_{C}$. From the IC case, the heat flows through $R_{\theta C A}$, to the ambient air in the enclosure, and finally through $R_{\theta A}$ to give $T_{A}$ the ambient temperature outside the enclosure

$T_{J}$ - IC junction temperature
$T_{C}$ - IC case temperature
${ }^{T} A^{\prime}$ - Ambient temperature in enclosure
$T_{A}$ - Ambient temperature outside enclosure
$R_{\text {OJC }}$ - Thermal resistance, junction-to-case
$R_{\theta C A} I^{-}$Thermal resistance, junction-to-ambient in enclosure
$R_{\theta A}$ - Thermal resistance, ambient in enclosure to ambient outside enclosure
figure 2 - heat flow in enclosed digital system
When many heat sources are involved, the thermal circuit becomes quite complex. The use of analysis with assumptions, approximations, and experimental techniques is necessary to understand the problems and find practical solutions.

## SECTION 2 - THERMAL CONSIDERATIONS FOR STD SYSTEMS

Pro-Log Series 7000 logic cards are designed with components rated at $+70^{\circ} \mathrm{C}$ or higher. We recommend a maximum ambient free-air temperature of $+55^{\circ} \mathrm{C}$ for this system. This provides for $a+30^{\circ} \mathrm{C}$ temperature rise over normal room temperature.

Card placement and card rack orientation are important considerations in configuring a system. Distribution of power throughout the card rack can contribute to optimizing system performance and lifetime. Even power distribution can be achieved by spacing high power-dissipating cards between cards of lower power.

In an STD/Series 7000 system a sequence of six cards such as 7803 CPU, 7702 ROM, 7602 1/0, 7701 RAM, 7502 I/0, $76041 / 0$ is a good example of even power distribution. This sequence was used in Example 2. Nominal power dissipation for these and other Series 7000 cards is listed in Table 1.

Further temperature reduction can be achieved by leaving a card slot empty adjacent to the component side of a high power dissipating card, or by providing forced air cooling to improve air circulation in the card rack.

This application note includes sample calculations for two system situations. Example 1 is for three fully loaded 7701 RAM cards on 1/2: and $1^{\prime \prime}$ centers. Example 2 is for six cards sequenced as listed above, for $1 / 2^{11}$ centers and again for $1^{\prime \prime}$ spacing on component side of 7701 RAM card. (See Configuring a Typical System)
To determine whether a particular card's temperature parameters will be exceeded, the user can calculate the maximum acceptable ambient temperature with the method outlined below.

1. Measure the case temperature ( $T_{C}$ ) of the hottest device or devices on the card(s) in question. This can be accomplished by placing a thermocouple probe imbedded in silicone grease in the sockets under selected IC's. Typically this $T_{C}$ will result in the worst case junction temperature ( $T_{j}$ ).
2. Use the data in Table 2 to determine the maximum acceptable device junction temperature ( $T_{j}$ ). This table shows different failure acceleration factors for different temperatures ( $T_{J}$ ).
3. Use Table 3 to find the approximate thermal resistance junction-to-case for the device or devices being considered. For more accurate calculations use the $R_{\theta J C}$ from the specific device manufacturer.
4. Using the manufacturer's data sheets, determine the maximum power the device dissipates.
5. Calculate the maximum $T_{A}^{\prime}$ acceptable. See sample calculations.
6. If the card cage is enclosed, measure the exhaust temperature ( $T_{A^{\prime}}$ ) after the temperature has stabilized. If this temperature is much above $T_{A}$, subtract $T_{A}$ from $T_{A}$, and lower the acceptable $T_{A}$ ' calculated for the system by this amount.

| CARD NO. | CARD NAME | NOMINAL POWER WATTS |
| ---: | :---: | :--- |
| 7504 | TRIAC | 16.75 W (maximum) |
| 7502 | RELAY | 1.50 |
| 7506,7503 | OPTO ISOLATED <br> INPUT | 2.90 |
| 7601 | TTL I/0 | 1.50 |
| 7602 | TTL IN | 1.10 |
| 7603 | TTL 1/0 | 1.75 |
| 7604 | TTL 170 | 2.30 |
| 7701 | RAM | 8.00 |
| 7702 | CPUROM | 1.00 |
| 7801 | CPU 8085 | 5.00 |
| 7802 | CPU 6800 | 6.30 |
| 7803 | CPU Z80 | 6.00 |

TABLE 1 - TYPICAL POWER DISSIPATIONS FOR SERIES 7000 CARDS

$\triangle$
The data taken was on the center card of 3 adjacent memory cards.
2
Abreviations: $T_{A}=$ Temperature ambient, $T_{J}=$ Temperature junction, $T_{C}=$ Temperature case,
$R_{\theta J C}=$ Thermal resistance junction to case, $P=$ Power
(3. The data was taken on cards mounted in a Pro-Log card cage with $3 / 8^{\prime \prime}$ rubber feet

4 Data was taken on the center card of 3 memory Wards on the indicated spacing

## SECTION 3 - CONFIGURING A TYPICAL SYSTEM

The three card spacing arrangements below show three possible system configurations to distribute power dissipation and heat. The first two correspond to the calculations in example 2 which follows. An improvement of $6^{\circ} \mathrm{C}$ in the calculated $T_{A}$ was attained by the addition of a space near the component side of the 7701 RAM card. The third configured system may not be optimal. The additional space may give better result if it is also on the component side of the RAM card. This depends on the power dissipated on the card adjacent to the circuit side of the RAM card and other system characteristics.

First attempt for power distribution Example 2 (See sample calculation $\mathrm{T}_{\mathrm{A}^{\prime}}=52^{\circ} \mathrm{C}$ )

power distribution (See example 2 sample calculation $\mathrm{T}_{\mathrm{A}^{\prime}}=56^{\circ} \mathrm{C}$ )


As above except $1^{\prime \prime}$ spacing on component side of 7701 RAM card.

Third attempt for power distribution (no sample calculations included in text)


As above except 1" space on both sides of 7701 RAM card

Primary consideration should be given to the space provided on the component side for the high power dissipating card.

EXAMPLE 2 -CALCULATION STD/7000 MIXED CARD SYSTEM

| Equations, Assumptions and Constants | 7701 Memory Card with 16K/2114L's convection cooling |  |
| :---: | :---: | :---: |
| Absolute $T_{J}=125^{\circ} \mathrm{C}$ <br> Desired maximum $T_{J}=115^{\circ} \mathrm{C}$ <br> Hottest iC for 7701 RAM card is 2114 L in center of card $\begin{aligned} & \mathrm{R}_{\theta J C}=45^{\circ} \mathrm{C} / \text { watt } \\ & \operatorname{Pmax}(2114 \mathrm{~L})=0.37 \mathrm{~W} \\ & T A=24^{\circ} \mathrm{C} \end{aligned}$ | $1 / 2^{11}$ spacing $\begin{aligned} & T_{A}=24.8^{\circ} \mathrm{C} \\ & T_{C}=70.8^{\circ} \mathrm{C}(\text { measured }) \end{aligned}$ | 1" spacing component'side 7701 only $\begin{aligned} & T_{A} \text { of } 24.8^{\circ} \mathrm{C} \\ & T_{C}=64.8^{\circ} \mathrm{C} \text { (measured) } \end{aligned}$ |
| $T_{J}=T_{C}+R_{\theta J C} \cdot(P \max )$ | $\begin{aligned} & T_{J}=70.8^{\circ} \mathrm{C}+\left(45^{\circ} \mathrm{C} / \mathrm{W}\right)(0.37 \mathrm{~W}) \\ & T_{J}=70.8^{\circ} \mathrm{C}+17^{\circ} \mathrm{C}=87.8^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & T_{J} 64.8{ }^{\circ} \mathrm{C}+\left(45^{\circ} \mathrm{C} / \mathrm{W}\right)(0.37 \mathrm{~W}) \\ & \mathrm{T}_{J} 64.8{ }^{\circ} \mathrm{C}+17^{\circ} \mathrm{C}=81.8{ }^{\circ} \mathrm{C} \end{aligned}$ |
| $\Delta T=T_{J}$ maximum desired - $T_{J}$ Calculated | $\Delta T=115^{\circ} \mathrm{C}-87.8^{\circ} \mathrm{C}=27.2{ }^{\circ} \mathrm{C}$ | $\Delta T=115^{\circ} \mathrm{C}-81.8{ }^{\circ} \mathrm{C}=33.2{ }^{\circ} \mathrm{C}$ |
| $T_{A}{ }^{\prime}$ maximum - $T_{A}$ measured $+\Delta T$ | $\begin{aligned} & \text { Maximum } T_{A^{\prime}}=24.8^{\circ} \mathrm{C}+27.2^{\circ} \mathrm{C} \\ & T_{A^{\prime}} \text { max }=52^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \operatorname{Max} T_{A^{\prime}}=24.8^{\circ} \mathrm{C}+33.2^{\circ} \mathrm{C}=58^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A^{\prime}} \text { max. }=58^{\circ} \mathrm{C} \end{aligned}$ |

NOTE: These calculations are for the first two of three examples of configuring a system for even power (heat distribution). See figure

The data taken on cards mounted in a Pro-Log CRIGA card cage with $3 / 8^{\prime \prime}$ rubber feet.

Table 2 indicates the relative failure rate as a function of junction temperature based on the assumption that the Arrhenius relationship is valid and that the average activation energy is $0.6 \mathrm{eV} . \mathrm{T}_{J}=55^{\circ} \mathrm{C}$ is used as the reference temperature. It should be noted that different device manufacturers' assumptions may vary from those upon which the acceleration factors in Table 1 are based.

Additional design margin is recommended if $T_{J}$ is above $105^{\circ} \mathrm{C}$. Also, a more thorough analysis should be done if the designer's system causes $\mathrm{T}_{J}$ to exceed $105^{\circ} \mathrm{C}$ for any length of time.

1 TABLE 2 - FAILURE RATE AS A FUNCTION OF $T_{J}$

| RECOMMENDATIONS | $T_{J}$ | ACCELERATION FACTORS |  |
| :--- | :---: | :---: | :---: |
|  |  | Relative to $55^{\circ} \mathrm{C}$ | Incremental |
| Good | $55^{\circ} \mathrm{C}$ | 1.00 | 1.8 |
| Operating | $65^{\circ} \mathrm{C}$ | 1.87 | 1.87 |
| Range | $75^{\circ} \mathrm{C}$ | 3.39 | 1.75 |
|  | $85^{\circ} \mathrm{C}$ | 5.92 | 1.70 |
|  | $95^{\circ} \mathrm{C}$ | 10.04 | 1.65 |
| Acceptable for | $105^{\circ} \mathrm{C}$ | 16.56 |  |
| Intermittant | $115^{\circ} \mathrm{C}$ | 26.62 | 1.61 |
| Operation |  |  |  |
| Not |  | 41.78 | 1.57 |

Example: The MTBF (mean time to failure) for a device with $T_{J}=55^{\circ} \mathrm{C}$ will on the average be 3.39 times longer than the MTBF for the same device with $\mathrm{T}_{J}=75^{\circ} \mathrm{C}$.

Typical thermal resistance values of standard plastic integrated circuit packages are shown in Table 3. The values shown do not imply any guarantee, but represent the latest and best available data. Steady-state thermal conditions are assumed in the resistance measurements. Also, the following definitions apply:

Table 3 Conditions and Definitions
$R_{\theta J C}{ }^{-}$Thermal resistance from junction to case using freon as a heat sink. This parameter offers good reapeatability and a high degree ( $\pm 5 \%$ ) of correlation.
$R_{\theta J A}$ - Thermal resistance from junction to still air ( $25^{\circ} \mathrm{C}$ ambient) with package in a specified socket. This parameter is highly dependent on test conditions which are difficult to reproduce accurately.

| PACKAGE DESCRIPTION | ${ }^{\circ} \mathrm{C} /$ WATT 4 |  | SOCKET USED FOR $R_{\text {BJA }}$ MEASUREMENT | $\begin{aligned} & \text { POWER } \\ & (\mathrm{mW}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{R}_{\text {日JC }} \pm 5 \%$ | $\mathrm{R}_{\text {өJA }} \pm 15 \%$ |  |  |
| 8-Pin Plastic DIP | 52 | 95 | Augat | 300 |
| 14- or 16-Pin Plastic DIP | 45 | 90 | Augat | 300 |
| 24-Pin Plastic DIP | 35 | 65 | Barnes | 500 |
| 14- or 16-Pin Ceramic DIP | 20 | 70 | Augat | 300 |
| 24 lead Ceramic, Kovar Lid | 15 | 50 |  |  |
| 14 or 16 lead with glass seal | 27 | 95 |  |  |
| 24 lead ceramic with glass seal | 12 | 50 |  |  |
| 14- or 16-pin Ceramic Flat Pak (alloy mounted) | 45 | 160 | Barnes Carrier/ Contactor | 500 |
| 14-Pin Ceramic Flat Pak (glass mounted) | 70 | 190 | Mech-Pak Carrier | 300 |
| 8- or 10-Pin Plug-In (alloy mounted) | 40 | 120 | Barnes | 400 |
| 8- or 10-Pin Plug-In (glass mounted) | 90 | 170 | Barnes | 700 |

TABLE 3 - THERMAL RESISTANCE OF TYPICAL IC PACKAGES
For more accurate calculations use values given by the device manufacturer

The card cage configuration shown below was used to evaluate the effects of forced-air cooling. A 37 cfm (no head) fan was mounted over each 3 -slot section of the card cage. The temperature was then monitored at different locations on the center card of the three adjacent 7701 RAM cards.

It was found that for this forced-air cooling configuration, the hottest IC on the card was at the top center of the memory chip array. The case temperature ( $T_{C}$ ) of the hottest 2114 Ls was, in every instance, within $20^{\circ} \mathrm{C}$ of ambient ( $\mathrm{T}_{\mathrm{A}}$ ).

Note that, without forced-air cooling, the hot spot on the card was at the center of the memory chip array rather than at the top of the card.

For design of systems using forced-air, refer to fan manufacturer literature such as "How to Select the Optimum Fan for Your Application" by Pamotor Corp., 770 Airport Blvd., Burlingame, Ca., 94010.


## SECTION 7 - CONCLUSION

If power dissipation is evenly distributed throughout an STD/Series 7000 system, convection cooling is often sufficient to maintain the ambient in the enclosure at an acceptable level. However this should never be assumed. Rather the designer should assess his particular system's thermal requi rements.

It should be noted that the desired ambient may also be limited by components other than ICs. For example, the temperature limitations of special components, such as batteries, may add additional temperature constraints to the system.
By applying the principles presented in this application note, the designer can determine the thermal profile of his system and optimize its life expectancy.
$\bullet$
-

## USER'S MANUAL

2411 Garden Road
Monterey, California 93940
Telephone: (408) 372-4593
TWX: 910-360-7082

